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ABSTRACT 
 

Decision Trees generated with recursive local partitioning 

methods are widely used in classification problems. In most cases, 

sub-optimal yet efficient axis-parallel partitioning generates trees 

of sufficient quality. More complex partitioning is possible, yet it 

is less efficient and generally not cost effective. Genetic 

Programming methods have also been used to generate decision 

trees. In this case, which does not rely on the standard recursive 

partitioning but rather manipulates explicit trees, the major 

challenge is to maintain valid trees. This paper uses Constrained 

Genetic Programming – a method allowing automatic control of 

the evolved trees. The method is used to evolve axis-parallel, and 

then also more powerful trees, using the standard Iris dataset. The 

results show that this method can be used to easily evolve 

different kinds of trees, and that axis-parallel and also oblique 

trees offer sufficient quality for this dataset. 

INTRODUCTION 
 

Finding a good classifier for a given database is a very common 

problem in data mining or machine learning. There are several 

approaches to solve this classification problem, such as rules, 

neural networks, and decision trees.   

ID3 and C4.5 are the two most known top-down partitioning 

methods for building decision trees [9]. Any such method needs a 

method to partition the space, using some partitioning quality 

measure such as entropy. Most partitioning methods work locally, 

that is partition the space recursively guided by local metrics, and 

only then possibly apply some global metrics to avoid overfit. If 

the partitioning is done on one attribute at a time, the resulting 

partition is axis-parallel. If each partitioning test has binary 

outcome, the resulting tree is binary.  

Decision tree should also be prevented from overfitting to match 

the training data. This can be accomplished by imposing some 

constraints on the trees, or by validating the trees with a separate 

validation data set. 

Recently, evolutionary methods, especially Genetic Programming, 

have been used for evolving decision trees [1][2][3][11]. In this 

case, decision trees are evolved by explicit operations of candidate 

decision trees. Then, a major challenge is how to perform such 

operations and yet preserve the constraints of the trees being used, 

such as maintaining only axis-parallel or linear trees [1][2][3].  

In this paper, we use a Genetic Programming system called CGP, 

which allows tree manipulations to be easily controlled. We use 

CGP to evolve axis-parallel, then linear, then oblique trees.  

Decision Trees 

Decision tree learning is a supervised learning method, using 

already classified training data. A supervised learning algorithm 

analyzes the training data and produces a classifier, usually some 

representation coupled with an inference rule, which can be used 

to classify new previously unseen data.  

Decision trees, especially axis-parallel recursive partitioning 

methods, are extremely popular due to efficiency, good sub-

optimal performance, and ability to easily explain its internals to 

any observer.  

In axis-parallel decision trees, each node of the tree is either an 

„if‟ test or a classification leaf. If it is a test, one attribute is tested 

against a constant, producing binary outcome (binary tree). Such a 

tree is shown in Figure 1 (the tree I sbinary, plus the test is shown 

as a separate node). The testing continues recursively and locally, 

until a decision node is reached. Classifying new data is simple – 

observing the features of a datum, follow the tests until a leaf-

decision is reached. Such trees can be built very efficiently, yet 

exhibit very good near-optimal performance, especially when 

coupled with some method to prevent overfit [4][9].  

In oblique decision trees, the test is extended to test two attributes 

at a time. This corresponds to finer partitioning of the universe of 

discourse. This is illustrated in Figure 2. Oblique trees can be 

extended to testing arbitrary linear combinations of attributes. 

Such decision trees are called linear, and they are illustrated in 

Figure 3. 

Oblique and linear decision trees perform finer partitioning, but 

sometime lead to overfit rather than to improved classification 

accuracy. Moreover, finding the optimal test in each node is a 

much more complex task now, usually not giving enough benefits 

for the extra costs.  



 

 

 

 

 

 

 

 

An example of a test in an axis-parallel tree, Figure 1, is “if intake 

temp < 100 then … else …”. An example test in an oblique 

decision tree, Figure 2, is “if intake temp – output temp < 0 then 

… else …”. Note that Figure 2 allows this test to be on just one 

attribute and 2 constants, reducing the tree to axis-parallel.  

Tests in Figure 3 are more complex. In general, linear trees allow 

any linear combination of attributes for a test. However, to 

simplify processing while knowing we will deal with problems 

involving four attributes, we build the test on linear combination 

of four attributes.  This is accomplished by using the specially 

designated + and * functions: +1 is an addition function that 

allows its two arguments to be addition functions only; +2 is an 

addition function that allows its two arguments to be 

multiplications of two attributes and constants only; +3 is similar 

on another two attributes. The multiplication functions are 

similarly constrained to build the tests as shown in Figure 3. In 

short, these restrictions guarantee that each tree will be linear 

using all four attributes. 

Genetic Programming 

Genetic programming (GP) is a technique based on the biological 

evolution similar to Genetic Algorithms (GA). GP maintains a 

population of independent solutions, each solution being a tree. 

GP solves problems by first sampling some potential solutions, 

using the population, and then mixing the solutions using 

simulated mutation and crossover while guided by Darwinian 

selective pressure (the better the solution, the more likely to be 

maintained and used). This process take place over a number of 

generations – each generation produces new population of 

solutions. 

When GP is applied to a problem when potential solution is a 

classifier, the classifier‟s quality can be determined by measuring 

the number of errors this classifier makes while classifying the 

training data.  

One obvious problem with applying GP to building decision trees  

is that the simulated mutation and crossover may not produce 

desired trees [1][2][3]. For example, if the GP is evolving trees as 

in Figure 1, after a number of operations the tree may look like 

that of Figure 2, or possibly even worse as a tree without proper 

tests or proper decision nodes.  

In our study, we will use Constrained GP (CGP) to maintain the 

desired properties for the trees. 

Constrained GP 

We use the CGP 2.1.1 [5]. CGP is a methodology to process both 

strong constraints and weak constraints in GP. Strong constraints 

are those that absolutely have to be satisfied, such as „<‟ node 

(test) must test an attribute against a constant if evolving axis-

parallel trees. Weak constraints are not used here – they also allow 

weights to be assigned to different arguments. CGP uses very 

simple constraints, called first order, which only allow 

constraining a node and one of its children at a time. That is, we 

can restrict „<‟ to have an attribute on the left and a constant on 

the right, but we cannot restrict it to use only one attribute and one 

constant. 

CGP 2 uses data typing for constraints, which can be used here 

easily – using types we can easily restrict nodes such as „<‟ to use 

any attribute on the left and any constant on the right by assigning 

one type to attributes and another type to constants. Once typing is 

assigned, and validity rules are entered into the system, CGP 

guarantees to only evolve valid trees, and does it with minimal 

overhead [5]. 

Figure 1. Axis-parallel binary decision tree. 

 

Figure 2. Oblique binary decision tree. 

Figure 3. Linear binary decision tree. 



Empirical Study 
 

Experimental Setup 

The function sets are presented in Table 1, 2 and 3, and the 

terminal set is presented in Table 4 – the terminals correspond to 

the attributes of the Iris data set. In addition, real number 

terminals are also used. The GP parameters are presented in Table 

5. All experiments were conducted and averaged using 10-fold 

cross-validation. 

Table 1. Function Set for Axis Parallel Decision Trees 

Function 

No. of 

Argument

s 

Data Type Return Type 

If 3 
Boolean, Class 

type, Class type 
Class type 

< 2 Real, Real Boolean 

 

Table 2. Function Set for Oblique Decision Trees 

Function 

No. of 

Argument

s 

Data Type Return Type 

If 3 
Boolean, Class 

type, Class type 
Class type 

< 2 Real, Real Boolean 

+ 2 Real, Real Real 

 

Table 3. Function Set for Linear Decision Trees 

Function 

No. of 

Argument

s 

Data Type Return Type 

If 3 
Boolean, Class 

type, Class type 
Class type 

< 2 Real, Real Boolean 

+1 2 Real, Real Real 

+2 2 Real, Real Real 

+3 2 Real, Real Real 

*1 2 Real, Real Real 

*2 2 Real, Real Real 

*3 2 Real, Real Real 

*4 2 Real, Real Real 

 

To prevent  GP from producing large trees, with possible 

unexpressed subtrees, we use the same method as used in [2] – we 

add penalty based on the number of nodes in the tree. We have 

tested various penalty levels and we have found that penalty for 

exceeding 40 nodes to be the best performer here.  

Table 4. Terminal Set 

Terminal Return Type 

X1 (Petal Length) Real 

X2 (Petal Width) Real 

X3 (Sepal Length) Real 

X4 (Sepal Width) Real 

 

Table 5. GP Parameter Settings 

Parameter Setting 

Population 

Size 
500 

Number of 

Generations 
50 

Fitness Cases 150 (Depends on the database we use) 

Selection 

operator 
Tournament Selection of size = 7 

Crossover 

rate 
0.9 

Mutation rate 0.05 

Tree type Half and half 

 

 

GP vs. CGP 

First, we compared performance of standard GP against that of 

CGP, while evolving axis-parallel decision trees. While CGP can 

use constraints to evolve only trees as those of Figure 1, standard 

GP will evolve any tree made of the labels. Such trees were 

subject to evaluation given carefully designed extended 

interpretations. Figure 4 shows the results - it is clear that the trees 

produced using GP i.e. without constraints are not as good as the 

trees evolved with. CGP produced only valid axis-parallel, as 

illustrated below: 

 

If(X2 <1.93543) then setosa,  

Else        If(X1 <1.57859) then versicolor else virginica 

 

 

Figure 1. Comparing GP and CGP performance with axis-

parallel decision tree. 
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Moreover, CGP produced small and high quality trees, Table 6 

compares those generated here with those produced with C4.5 as 

reported in [4]. 

Table 6. Axis Parallel Decision Trees Comparison 

Algorithm 
Predicted Accuracy on 

testing data 

Number of tree 

nodes 

C4.5 94.0% 5.0 

CGP 96.0% 5.0 

 

 

 

Figure 2. Comparing different comlexity decision trees. 

 

Table 7. Decision Trees with penalty on nodes>40 

Decision 

Tree 

Accuracy on total 

training and testing 

data  

Average number 

of error on total 

training and 

testing data 

Axis Parallel 96.73% 4.9 

oblique 97.06% 4.4 

linear 96.4% 5.4 

 

The next experiment compared axis-parallel, oblique, and linear 

decision trees as evolved with CGP. The results are presented in 

Figure 2 and Table 7. As seen, axis-parallel decision trees are the 

easiest to evolve, as it takes the fewest CGP generations to evolve 

high quality trees. However, oblique decision trees give better 

overall accuracy. Below is an example of a generated oblique 

decision tree, with only 3 errors. 

 (if (< (+ X1 2.00297) 3.79673) 

     (if (< (+ X2 0.13303) 2.45623) 

         (if (< (+ X2 X1) 3.10213) setosa setosa) 

         (if (< (+ X2 X1) 6.86323) versicolor virginica))  (if (< (+ X2 

X1) 2.08085) versicolor virginica)) 

 

Conclusion  
 

We have studied applying CGP to evolve different kinds of 

decision trees for the Iris dataset. As expected, CGP evolved trees 

outperform those generated by a standard GP. Among different 

kinds of trees evolved by CGP, the simplest axis-parallel trees 

were the easiest to evolve quickly, but the more complex oblique 

decision trees produced better accuracy when tested using 10-fold 

cross-validation. Even more complex linear trees did not 

outperform oblique trees, for this data set. 
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