
Applications of Genetic Programming to Building Decision
Trees

Cezary Z Janikow
Dept. of Mathematics and Computer Science

University of Missouri - St. Louis

St. Louis, Missouri 63121

janikow@umsl.edu

Sandhya Malatkar
Dept. of Mathematics and Computer Science

University of Missouri - St. Louis

St. Louis, Missouri 63121

Sm9r6@mail.umsl.edu

Contact Author
Cezary Z Janikow

Janikow@umsl.edu

Keywords
Genetic Programming, Constrained Genetic Programming,

Decision Trees, Classification, Data Mining

Conference
GEM‟11

ABSTRACT

Decision Trees generated with recursive local partitioning

methods are widely used in classification problems. In most cases,

sub-optimal yet efficient axis-parallel partitioning generates trees

of sufficient quality. More complex partitioning is possible, yet it

is less efficient and generally not cost effective. Genetic

Programming methods have also been used to generate decision

trees. In this case, which does not rely on the standard recursive

partitioning but rather manipulates explicit trees, the major

challenge is to maintain valid trees. This paper uses Constrained

Genetic Programming – a method allowing automatic control of

the evolved trees. The method is used to evolve axis-parallel, and

then also more powerful trees, using the standard Iris dataset. The

results show that this method can be used to easily evolve

different kinds of trees, and that axis-parallel and also oblique

trees offer sufficient quality for this dataset.

INTRODUCTION

Finding a good classifier for a given database is a very common

problem in data mining or machine learning. There are several

approaches to solve this classification problem, such as rules,

neural networks, and decision trees.

ID3 and C4.5 are the two most known top-down partitioning

methods for building decision trees [9]. Any such method needs a

method to partition the space, using some partitioning quality

measure such as entropy. Most partitioning methods work locally,

that is partition the space recursively guided by local metrics, and

only then possibly apply some global metrics to avoid overfit. If

the partitioning is done on one attribute at a time, the resulting

partition is axis-parallel. If each partitioning test has binary

outcome, the resulting tree is binary.

Decision tree should also be prevented from overfitting to match

the training data. This can be accomplished by imposing some

constraints on the trees, or by validating the trees with a separate

validation data set.

Recently, evolutionary methods, especially Genetic Programming,

have been used for evolving decision trees [1][2][3][11]. In this

case, decision trees are evolved by explicit operations of candidate

decision trees. Then, a major challenge is how to perform such

operations and yet preserve the constraints of the trees being used,

such as maintaining only axis-parallel or linear trees [1][2][3].

In this paper, we use a Genetic Programming system called CGP,

which allows tree manipulations to be easily controlled. We use

CGP to evolve axis-parallel, then linear, then oblique trees.

Decision Trees

Decision tree learning is a supervised learning method, using

already classified training data. A supervised learning algorithm

analyzes the training data and produces a classifier, usually some

representation coupled with an inference rule, which can be used

to classify new previously unseen data.

Decision trees, especially axis-parallel recursive partitioning

methods, are extremely popular due to efficiency, good sub-

optimal performance, and ability to easily explain its internals to

any observer.

In axis-parallel decision trees, each node of the tree is either an

„if‟ test or a classification leaf. If it is a test, one attribute is tested

against a constant, producing binary outcome (binary tree). Such a

tree is shown in Figure 1 (the tree I sbinary, plus the test is shown

as a separate node). The testing continues recursively and locally,

until a decision node is reached. Classifying new data is simple –

observing the features of a datum, follow the tests until a leaf-

decision is reached. Such trees can be built very efficiently, yet

exhibit very good near-optimal performance, especially when

coupled with some method to prevent overfit [4][9].

In oblique decision trees, the test is extended to test two attributes

at a time. This corresponds to finer partitioning of the universe of

discourse. This is illustrated in Figure 2. Oblique trees can be

extended to testing arbitrary linear combinations of attributes.

Such decision trees are called linear, and they are illustrated in

Figure 3.

Oblique and linear decision trees perform finer partitioning, but

sometime lead to overfit rather than to improved classification

accuracy. Moreover, finding the optimal test in each node is a

much more complex task now, usually not giving enough benefits

for the extra costs.

An example of a test in an axis-parallel tree, Figure 1, is “if intake

temp < 100 then … else …”. An example test in an oblique

decision tree, Figure 2, is “if intake temp – output temp < 0 then

… else …”. Note that Figure 2 allows this test to be on just one

attribute and 2 constants, reducing the tree to axis-parallel.

Tests in Figure 3 are more complex. In general, linear trees allow

any linear combination of attributes for a test. However, to

simplify processing while knowing we will deal with problems

involving four attributes, we build the test on linear combination

of four attributes. This is accomplished by using the specially

designated + and * functions: +1 is an addition function that

allows its two arguments to be addition functions only; +2 is an

addition function that allows its two arguments to be

multiplications of two attributes and constants only; +3 is similar

on another two attributes. The multiplication functions are

similarly constrained to build the tests as shown in Figure 3. In

short, these restrictions guarantee that each tree will be linear

using all four attributes.

Genetic Programming

Genetic programming (GP) is a technique based on the biological

evolution similar to Genetic Algorithms (GA). GP maintains a

population of independent solutions, each solution being a tree.

GP solves problems by first sampling some potential solutions,

using the population, and then mixing the solutions using

simulated mutation and crossover while guided by Darwinian

selective pressure (the better the solution, the more likely to be

maintained and used). This process take place over a number of

generations – each generation produces new population of

solutions.

When GP is applied to a problem when potential solution is a

classifier, the classifier‟s quality can be determined by measuring

the number of errors this classifier makes while classifying the

training data.

One obvious problem with applying GP to building decision trees

is that the simulated mutation and crossover may not produce

desired trees [1][2][3]. For example, if the GP is evolving trees as

in Figure 1, after a number of operations the tree may look like

that of Figure 2, or possibly even worse as a tree without proper

tests or proper decision nodes.

In our study, we will use Constrained GP (CGP) to maintain the

desired properties for the trees.

Constrained GP

We use the CGP 2.1.1 [5]. CGP is a methodology to process both

strong constraints and weak constraints in GP. Strong constraints

are those that absolutely have to be satisfied, such as „<‟ node

(test) must test an attribute against a constant if evolving axis-

parallel trees. Weak constraints are not used here – they also allow

weights to be assigned to different arguments. CGP uses very

simple constraints, called first order, which only allow

constraining a node and one of its children at a time. That is, we

can restrict „<‟ to have an attribute on the left and a constant on

the right, but we cannot restrict it to use only one attribute and one

constant.

CGP 2 uses data typing for constraints, which can be used here

easily – using types we can easily restrict nodes such as „<‟ to use

any attribute on the left and any constant on the right by assigning

one type to attributes and another type to constants. Once typing is

assigned, and validity rules are entered into the system, CGP

guarantees to only evolve valid trees, and does it with minimal

overhead [5].

Figure 1. Axis-parallel binary decision tree.

Figure 2. Oblique binary decision tree.

Figure 3. Linear binary decision tree.

Empirical Study

Experimental Setup

The function sets are presented in Table 1, 2 and 3, and the

terminal set is presented in Table 4 – the terminals correspond to

the attributes of the Iris data set. In addition, real number

terminals are also used. The GP parameters are presented in Table

5. All experiments were conducted and averaged using 10-fold

cross-validation.

Table 1. Function Set for Axis Parallel Decision Trees

Function

No. of

Argument

s

Data Type Return Type

If 3
Boolean, Class

type, Class type
Class type

< 2 Real, Real Boolean

Table 2. Function Set for Oblique Decision Trees

Function

No. of

Argument

s

Data Type Return Type

If 3
Boolean, Class

type, Class type
Class type

< 2 Real, Real Boolean

+ 2 Real, Real Real

Table 3. Function Set for Linear Decision Trees

Function

No. of

Argument

s

Data Type Return Type

If 3
Boolean, Class

type, Class type
Class type

< 2 Real, Real Boolean

+1 2 Real, Real Real

+2 2 Real, Real Real

+3 2 Real, Real Real

*1 2 Real, Real Real

*2 2 Real, Real Real

*3 2 Real, Real Real

*4 2 Real, Real Real

To prevent GP from producing large trees, with possible

unexpressed subtrees, we use the same method as used in [2] – we

add penalty based on the number of nodes in the tree. We have

tested various penalty levels and we have found that penalty for

exceeding 40 nodes to be the best performer here.

Table 4. Terminal Set

Terminal Return Type

X1 (Petal Length) Real

X2 (Petal Width) Real

X3 (Sepal Length) Real

X4 (Sepal Width) Real

Table 5. GP Parameter Settings

Parameter Setting

Population

Size
500

Number of

Generations
50

Fitness Cases 150 (Depends on the database we use)

Selection

operator
Tournament Selection of size = 7

Crossover

rate
0.9

Mutation rate 0.05

Tree type Half and half

GP vs. CGP

First, we compared performance of standard GP against that of

CGP, while evolving axis-parallel decision trees. While CGP can

use constraints to evolve only trees as those of Figure 1, standard

GP will evolve any tree made of the labels. Such trees were

subject to evaluation given carefully designed extended

interpretations. Figure 4 shows the results - it is clear that the trees

produced using GP i.e. without constraints are not as good as the

trees evolved with. CGP produced only valid axis-parallel, as

illustrated below:

If(X2 <1.93543) then setosa,

Else If(X1 <1.57859) then versicolor else virginica

Figure 1. Comparing GP and CGP performance with axis-

parallel decision tree.

0

0.2

0.4

0.6

0.8

1

-10 10 30 50

A
cc

u
ra

cy

Generations

Comparing CGP and GP
CGP

GP

CGP-
TestingData

GP-
TestingData

Moreover, CGP produced small and high quality trees, Table 6

compares those generated here with those produced with C4.5 as

reported in [4].

Table 6. Axis Parallel Decision Trees Comparison

Algorithm
Predicted Accuracy on

testing data

Number of tree

nodes

C4.5 94.0% 5.0

CGP 96.0% 5.0

Figure 2. Comparing different comlexity decision trees.

Table 7. Decision Trees with penalty on nodes>40

Decision

Tree

Accuracy on total

training and testing

data

Average number

of error on total

training and

testing data

Axis Parallel 96.73% 4.9

oblique 97.06% 4.4

linear 96.4% 5.4

The next experiment compared axis-parallel, oblique, and linear

decision trees as evolved with CGP. The results are presented in

Figure 2 and Table 7. As seen, axis-parallel decision trees are the

easiest to evolve, as it takes the fewest CGP generations to evolve

high quality trees. However, oblique decision trees give better

overall accuracy. Below is an example of a generated oblique

decision tree, with only 3 errors.

 (if (< (+ X1 2.00297) 3.79673)

 (if (< (+ X2 0.13303) 2.45623)

 (if (< (+ X2 X1) 3.10213) setosa setosa)

 (if (< (+ X2 X1) 6.86323) versicolor virginica)) (if (< (+ X2

X1) 2.08085) versicolor virginica))

Conclusion

We have studied applying CGP to evolve different kinds of

decision trees for the Iris dataset. As expected, CGP evolved trees

outperform those generated by a standard GP. Among different

kinds of trees evolved by CGP, the simplest axis-parallel trees

were the easiest to evolve quickly, but the more complex oblique

decision trees produced better accuracy when tested using 10-fold

cross-validation. Even more complex linear trees did not

outperform oblique trees, for this data set.

References

[1] Jose L. Alvarez, Jacinto Mata and Jose C. Riquelme

(2001), “CGO3: An Oblique Classification System

Using An Evolutionary Algorithm and C4.5”.

[2] Martijn Bot (1999), “Application of Genetic

Programming to Induction of Linear Classification

Trees”.

[3] Jeroen Eggermont, Joost N. Kok and Walter A. Kosters,

“Genetic Programming for Data Classification:

Partitioning the search space”.

[4] Cezary Z. Janikow and Maciej Fajfer, “Fuzzy

Partitioning with FID3.1”.

[5] CGP lil-gp 2.1.1; 1.02 User‟s Manual, Version March

16, 2007, Cezary Z. Janikow, Scott DeWeese.

[6] Thomas Loveard and Victor Ciesielski, “Representing

Classification problem in Genetic Programming”.

[7] Kamel Faraoun and Aoued Boukelif (2005), “Genetic

Programming Approach for Multi-Category Pattern

Classification Applied to Network Intrusion Detection”.

[8] Daniel Rivero, Jaun R. Rabunal Dorado, Alejandro

pazos and Nieves Pedreira, “Extracting Knowledge

from databases with Genetic Programming: Iris Flower

Classification problem”.

[9] J. R. Quinlan (2006), “Improved use of Continuous

Attributes in C4.5”

[10] Maria-Luiza Antonie and Osmar R.Zaiane, “An

Associative Classifier Based on Positive and Negative

Rules”.

[11] Satchidananda Dehuri, Sung-Bae Cho (2008), “Multi-

objective Classification Rule Mining Using Gene

Expression Programming”.

[12] K. Hima Bindu, P.S.V.S Sai Prasad and C.Raghavendra

Rao (2010), “ Hybrid Decision Tree Based On Inferred

Attribute”.

[13] Anthony K.H. Tung, Xin Xu and Beng Chin Ooi

(2005), “CURLER: Finding and Visualizing Nonlinear

Correlation Clusters”.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-10 10 30 50

A
cc

u
ra

cy

Generations

Decision Trees
Axis parallel
decision trees,
Testing=96.0%

Oblique Decision
trees,Testing=96.
42%

Linear Decision
trees,Testing=96.
0%

